Main_script/old/DQC_Multi_Files (2).R

#-------------------------------------------------------------------------------------------------------------------------------------------------------
# File Title:   DQC_Multi_Files.R
# TITLE:        Data quality check LTER on different files in scheduling folder
# Author:       Brida Christian, Genova Giulio, Zandonai Alessandro
#               Institute for Alpine Environment
# Data:         13/02/2018
# Version:      2.0
#
#------------------------------------------------------------------------------------------------------------------------------------------------------

rm(list = ls(all.names = TRUE))


# ..... Libraries .....................................................................................................................................

library(devtools)
install_github("bridachristian/DataQualityCheckEuracAlpEnv")
library("DataQualityCheckEuracAlpEnv")

library(zoo)
library(knitr)
library(ggplot2)
library(reshape2)
library(DT)
library(htmltools)
library(xtable)
# .....................................................................................................................................................

# ..... Params section .....................................................................................................................................

# main_dir = "H:/Projekte/Klimawandel/Experiment/data/2order/DQC/"
main_dir = "C:/Users/CBrida/Desktop/myDQC/"

input_dir <- paste(main_dir, "/DataQualityCheck_results/Input/",sep = "")               # where input files are
data_output_dir <- paste(main_dir, "/DataQualityCheck_results/Output/Data/",sep = "")   # where to put output files
report_output_dir <- paste(main_dir, "/DataQualityCheck_results/Output/Report/",sep = "")   # where to put output reports
project_dir <- paste(main_dir, "/DataQualityCheckEuracAlpEnv/",sep = "")  # where package is developed or cloned from github

# input_dir <- "H:/Projekte/Klimawandel/Experiment/data/2order/DQC/DataQualityCheck_results/Input/"                # where input files are
# data_output_dir <- "H:/Projekte/Klimawandel/Experiment/data/2order/DQC/DataQualityCheck_results/Output/Data/"   # where to put output files
# report_output_dir <- "H:/Projekte/Klimawandel/Experiment/data/2order/DQC/DataQualityCheck_results/Output/Report/"   # where to put output reports
# project_dir <- "H:/Projekte/Klimawandel/Experiment/data/2order/DQC/DataQualityCheckEuracAlpEnv/"  # where package is developed or cloned from github


data_from_row =  5                                             # <-- Row number of first data
header_row_number =  2                                         # <-- Row number of header
datetime_header =  "TIMESTAMP"                                 # <-- header corresponding to TIMESTAMP
datetime_format =  "%Y-%m-%d %H:%M"                          # <-- datetime format. Use only: Y -> year, m -> month, d -> day, H -> hour, M -> minute
datetime_sampling =  "15 min"
record_header =  "RECORD"
range_file =  "Range.csv"

write_output_files =  "TRUE"
write_output_report =  "TRUE"
# ~~~ Default directory ~~~~


range_dir <-paste(main_dir, "/DataQualityCheck_results/Process/",sep = "")
download_table_dir <- paste(main_dir, "/DataQualityCheck_results/Process/",sep = "")
logger_info_file <- paste(main_dir, "/DataQualityCheck_results/Process/Logger_number_and_software.csv",sep = "")

Rmd_report_generator <- paste(project_dir, "Rmd/DQC_Report_Generator.Rmd",sep = "")

# ..........................................................................................................................................................

project_type = c("LTER","MONALISA")

PROJECT = "MONALISA"   # <- comment at the end of test

for(PROJECT in project_type){

  # ..... files selection .....................................................................................................................................

  files_available_raw = dir(input_dir,pattern = ".dat")                  # <-- Admitted pattern:  ".dat" or ".csv"

  files_available_raw = files_available_raw[!grepl(pattern = "backup",x = files_available_raw)]          # REMOVE FILES WITH WRONG NAMES (.dat.backup not admitted)

  # if(PROJECT != "MONALISA"){
  #   files_available_raw = files_available_raw[!grepl(pattern = "IP",x = files_available_raw)]          # <- OLD! for MONALISA  IP in name is admitted (NO!!!!!!)
  # }

  files_available = files_available_raw[grepl(pattern = paste("^",PROJECT,sep = ""),x = files_available_raw)]

  files_no_project = substring(files_available, nchar(PROJECT)+2, nchar(files_available)-4)

  if(length(files_no_project) > 0){
    u1 =c()
    logg_data_NAME = c()
    table_data_NAME = c()

    for(h in 1:length(files_no_project)){
      u1[h] = gregexpr(files_no_project,pattern = "_")[[h]][1]   # <- here we find the sencond "[[1]][2]" underscore!!!!!
      logg_data_NAME[h] = substring(text = files_no_project[h],first = 1,last = u1[h]-1)
      table_data_NAME[h] = substring(text = files_no_project[h],first = u1[h]+1,last = nchar(files_no_project[h]))
    }
    df_files = data.frame(files_available, logg_data_NAME, table_data_NAME)
    colnames(df_files) = c("Files", "LoggerNet_name", "Datatable_name")
    # df_files =

    if(PROJECT == "LTER"){                                                                        # <--Filter files based on Project (diffent if is MONALISA or LTER)
      files_available = df_files$Files[which(df_files$LoggerNet_name == df_files$Datatable_name)]
    }

    if(PROJECT == "MONALISA"){                                                                        # <--Filter files based on Project (diffent if is MONALISA or LTER)
      files_available = df_files$Files[which(df_files$LoggerNet_name == df_files$Datatable_name)]
    }
  } else{
    files_available = files_no_project
  }

  files_available = as.character(files_available)

  # ..........................................................................................................................................................

  # ..... download table section .....................................................................................................................................


  download_table = read_and_update_download_table(DOWNLOAD_TABLE_DIR = download_table_dir, FILES_AVAILABLE = files_available, DATETIME_FORMAT = datetime_format, PROJECT = PROJECT)


  ############################################
  t = 1

  # final_dataframe = data.frame(t(rep(NA, times = 14)))
  final_dataframe = matrix(ncol = 16, nrow = length(files_available))

  colnames(final_dataframe) = c("Station", "Status",
                                "flag_empty","flag_logger_number", "flag_error_df","flag_date",
                                "flag_duplicates_rows","flag_overlap","flag_missing_records","flag_missing_dates",
                                "flag_range_variable_to_set","flag_range_variable_new","flag_out_of_range", "Report_link", "Data_folder", "File_name")



  report_start = as.POSIXct(Sys.time(), tz = "Etc/GMT-1")


  for(t in  1: length(files_available)){
    gc(reset = T)

    rm(list = setdiff(ls(all.names = TRUE),c("t","PROJECT","data_from_row","datetime_format","datetime_header","datetime_sampling","download_table","download_table_dir",
                                             "files_available","header_row_number","input_dir","data_output_dir","report_output_dir","project_dir",
                                             "range_dir","range_file","logger_info_file","record_header","Rmd_report_generator","write_output_files","write_output_report",
                                             "report_start", "final_dataframe","output_dir_report")))


    FILE_NAME = files_available[t]

    u1 = gregexpr(FILE_NAME,pattern = "_")[[1]][1]      # <- here we find the first "[[1]][1]" underscore!!!!!
    u2 = gregexpr(FILE_NAME,pattern = "_")[[1]][2]      # <- here we find the first "[[1]][1]" underscore!!!!!

    # if(PROJECT == "MONALISA"){                             # <- this section was used when in monalisa station name finished by "_MeteoVal"
    #   STATION_NAME = substring(FILE_NAME,u1+1, u1+9)
    # }else{
    #   STATION_NAME = substring(FILE_NAME,u1+1, u2-1)
    # }

    STATION_NAME = substring(FILE_NAME,u1+1, u2-1)            # station name is the first string between the 2 underscores
    
    cat(paste("********* a. File to process:", FILE_NAME, "*********"),sep = "\n")

    w_dwnl = which(download_table$Station == substring(FILE_NAME, 1, nchar(FILE_NAME) - 4))
    dwnl_info = download_table[w_dwnl,]

    # if(dir.exists(paste(data_output_dir,substring(FILE,1,nchar(FILE)-4),"/", sep = ""))){                # create subfolder to store data organized by station name
    #   output_dir_data_new = paste(data_output_dir,substring(FILE,1,nchar(FILE)-4),"/", sep = "")
    # }else{
    #   dir.create(paste(data_output_dir,substring(FILE,1,nchar(FILE)-4),"/", sep = ""))
    #   output_dir_data_new = paste(data_output_dir,substring(FILE,1,nchar(FILE)-4),"/", sep = "")
    # }


    if(dwnl_info$Stop_DQC == 0){

      date_last_modif_file = as.character(format(file.mtime(paste(input_dir,FILE_NAME,sep = "")),format = datetime_format))

      if(date_last_modif_file != dwnl_info$Last_Modification | is.na(dwnl_info$Last_Modification)){

        input_dir = input_dir
        output_dir_data = data_output_dir
        output_dir_report = report_output_dir
        project_dir = project_dir
        data_from_row = data_from_row
        header_row_number = header_row_number
        datetime_header = datetime_header
        datetime_format = datetime_format
        datetime_sampling = datetime_sampling
        record_header = record_header
        range_file = range_file
        write_output_files = write_output_files
        write_output_report = write_output_report
        file_name = FILE_NAME
        station_name = STATION_NAME
        start_date = dwnl_info$Last_date
        logger_info_file = logger_info_file
        record_check = dwnl_info$record_check

        rm(dwnl_info)

        output_file_report = paste("DQC_Report_",station_name,"_tmp.html",sep = "")
        # output_file_report = paste("DQC_Report_",substring(FILE,1,nchar(FILE)-4),"_tmp.html",sep = "")

        cat(paste("********* b. Station under processing:", station_name, "*********"),sep = "\n")


        rmarkdown::render(input = Rmd_report_generator ,
                          output_file = output_file_report,
                          output_dir = output_dir_report,
                          params = list(input_dir = input_dir ,
                                        output_dir_data = output_dir_data ,
                                        output_dir_report = output_dir_report ,
                                        project_dir = project_dir ,
                                        data_from_row = data_from_row ,
                                        header_row_number = header_row_number ,
                                        datetime_header = datetime_header ,
                                        datetime_format = datetime_format ,
                                        datetime_sampling = datetime_sampling ,
                                        record_header = record_header ,
                                        range_file = range_file ,
                                        write_output_files = write_output_files ,
                                        write_output_report = write_output_report ,
                                        file_name = file_name ,
                                        station_name = station_name,
                                        start_date = start_date,
                                        logger_info_file = logger_info_file,
                                        record_check = record_check))

        gc(reset = T)

        if(flag_empty == 0 & flag_logger_number == 0 & flag_error_df == 0 & flag_date == 0){
          out_filename_date = paste(substring(mydata[nrow(mydata),which(colnames(mydata) == datetime_header)],1,4),
                                    substring(mydata[nrow(mydata),which(colnames(mydata) == datetime_header)],6,7),
                                    substring(mydata[nrow(mydata),which(colnames(mydata) == datetime_header)],9,10),
                                    # "_",
                                    # substring(mydata[nrow(mydata),which(colnames(mydata) == datetime_header)],12,13),
                                    # substring(mydata[nrow(mydata),which(colnames(mydata) == datetime_header)],15,16),
                                    sep = "")

          last_date = mydata[nrow(mydata),which(colnames(mydata)== datetime_header)]

        } else {
          out_filename_date = "no_datetime"
        }


        out_filename_report = paste("DQC_Report_",STATION_NAME,"_",out_filename_date,".html",sep = "")

        if(file.exists(paste(output_dir_report,out_filename_report,sep = ""))){

          j=0
          repeat{
            j=j+1
            out_filename_report_new = paste(substring(out_filename_report,1, nchar(out_filename_report)-5),"_",j,".html",sep = "")
            if(!file.exists(paste(output_dir_report,out_filename_report_new,sep = ""))){
              break
            }
          }
        } else {
          out_filename_report_new = out_filename_report
        }

        out_filename_report = out_filename_report_new
        output_file_report = file.rename(from = paste(output_dir_report,output_file_report,sep = ""),
                                         to = paste(output_dir_report,out_filename_report,sep = ""))



        if(!is.na(flag_missing_dates)){
          download_table$Last_date[w_dwnl] = last_date
          download_table$Last_Modification[w_dwnl] = date_last_modif_file
          download_table$record_check[w_dwnl] = 1    # NEW! Record check activated every time!
          write.csv(download_table,paste(download_table_dir,"download_table.csv",sep = ""),quote = T,row.names = F, na = "NA")
          # file_ok = c(file_ok,FILE)

          final_info = c(STATION_NAME, "Analyzed and write output",
                         flags_df$value,
                         paste(output_dir_report,out_filename_report,sep = ""),
                         paste(output_dir_data,sep = ""),
                         # paste(substring(FILE,1,nchar(FILE)-4),"_",out_filename_date, ".csv",sep = ""))
                         paste(out_filename_data_new,sep = ""))
        }else{
          # file_stopped = c(file_stopped, FILE)

          final_info = c(STATION_NAME, "Analyzed with errors",
                         flags_df$value,
                         paste(output_dir_report,out_filename_report,sep = ""),
                         NA, NA )

        }

      } else {
        warning(paste("File",STATION_NAME, "already analyzed!"))
        # file_already_processed = c(file_already_processed,FILE)
        final_info = c(STATION_NAME, "Already analyzed",
                       NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
                       NA,
                       NA, NA)
      }

    }else{
      final_info = c(STATION_NAME, "Not analyzed",
                     NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
                     NA,
                     NA, NA)
    }

    # final_dataframe = rbind(final_dataframe,final_info)
    final_dataframe[t,] = final_info

    gc(reset = T)
    cat(paste("********* c.", STATION_NAME, "analyzed! *********"),sep = "\n")

  }



  input_final = paste(project_dir,"Rmd/DQC_Final_Report.Rmd",sep = "")
  output_file_final =  paste(PROJECT,"_DQC_Report_", substring(report_start,1,4),
                             substring(report_start,6,7),
                             substring(report_start,9,10),
                             # substring(report_start,12,13),
                             # substring(report_start,15,16),
                             ".html", sep = "")
  # output_dir_final = output_dir_report
  output_dir_final = report_output_dir

  if(file.exists(paste(output_dir_final,output_file_final,sep = ""))){
    j=0
    repeat{
      j=j+1
      output_file_final_new = paste(substring(output_file_final,1, nchar(output_file_final)-5),"_",j,".html",sep = "")
      if(!file.exists(paste(output_dir_final,output_file_final_new,sep = ""))){
        break
      }
    }
  } else {
    output_file_final_new = output_file_final
  }

  rmarkdown::render(input = input_final,
                    output_file = output_file_final_new ,
                    output_dir = output_dir_final,
                    params = list(report_start = report_start ,
                                  final_dataframe = final_dataframe))





}
bridachristian/DataQualityCheckEuracAlpEnv documentation built on Oct. 27, 2019, 5:55 p.m.